variance
#
Functions to calculate the variance of a time series, accounting for autocorrelation.
Methods implemented:
- Initial sequence methods (see Geyer, 1992: https://www.jstor.org/stable/2246094)
- Window estimators (see summary in see Geyer, 1992: https://www.jstor.org/stable/2246094)
Did not implement overlapping batch means (see Meketon and Schmeiser, 1984: https://repository.lib.ncsu.edu/bitstream/handle/1840.4/7707/1984_0041.pdf?sequence=1), as this is equivalent to using a Bartlett window.
Functions:
-
get_variance_initial_sequence
–Calculate the variance of a time series using initial sequence methods.
-
get_variance_series_initial_sequence
–Repeatedly calculate the variance of a time series while discarding increasing
-
get_variance_window
–Calculate the variance of a time series using window estimators.
-
get_variance_series_window
–Repeatedly calculate the variance of a time series while discarding increasing
-
replicated_batch_means_variance
–Estimate the variance of a time series using the replicated batch means method.
-
lugsail_variance
–Estimate the variance of a time series using the lugsail method.
-
inter_run_variance
–Compute the variance based on the inter-run differences
-
intra_run_variance
–Compute the average intra-run variance estimate.
_compute_autocovariance_no_fft
#
Calculate the auto-covariance as a function of lag time for a time series. Avoids using statsmodel's acovf function as using numpy's dot function and jit gives a substantial speedup.
Parameters:
-
data
(ndarray
) –A time series of data with shape (n_samples,).
-
max_lag
(int
, default:None
) –The maximum lag time to use when calculating the auto-correlation function. If None, the maximum lag time will be the length of the time series. The default is None.
Returns:
-
ndarray
–The auto-correlation function of the time series.
Source code in red/variance.py
_compute_autocovariance_fft
#
Calculate the autocovariance using the FFT method, as implemented in statsmodels. Note that we can speed this up for large arrays by rewriting to directly use numpy's fft function and using jit with rocket-fft https://github.com/styfenschaer/rocket-fft.
Parameters:
-
data
(ndarray
) –A time series of data with shape (n_samples,).
-
max_lag
(int
, default:None
) –The maximum lag time to use when calculating the auto-correlation function. If None, the maximum lag time will be the length of the time series. The default is None.
Returns:
-
ndarray
– -
The auto-correlation function of the time series.
–
Source code in red/variance.py
_get_autocovariance
#
_get_autocovariance(
data: NDArray[float64],
max_lag: Union[None, int] = None,
mean: Union[None, float] = None,
fft: bool = False,
) -> NDArray[float64]
Calculate the auto-covariance as a function of lag time for a time series.
Parameters:
-
data
(ndarray
) –A time series of data with shape (n_samples,).
-
max_lag
(int
, default:None
) –The maximum lag time to use when calculating the auto-correlation function. If None, the maximum lag time will be the length of the time series. The default is None.
-
mean
(Union[None, float]
, default:None
) –The mean of the time series. If None, the mean will be calculated from the time series. This is useful when the mean has been calculated from an ensemble of time series.
-
fft
(bool
, default:False
) –Whether to use the FFT method to calculate the auto-covariance. The FFT method is faster for large arrays and slower for shorter arrays.
Returns:
-
ndarray
–The auto-correlation function of the time series.
Source code in red/variance.py
_get_gamma_cap
#
Compute the capitial gamma function from the auto-covariance function.
Parameters:
-
autocov_series
(ndarray
) –The auto-covariance function of a time series.
Returns:
-
ndarray
–The capital gamma function of the time series.
Source code in red/variance.py
_get_initial_positive_sequence
#
_get_initial_positive_sequence(
gamma_cap: NDArray[float64], min_max_lag_time: int = 3
) -> NDArray[float64]
" Get the initial positive sequence from the capital gamma function of a time series. See Geyer, 1992: https://www.jstor.org/stable/2246094.
Parameters:
-
gamma_cap
(ndarray
) –The capital gamma function of a time series.
-
min_max_lag_time
(int
, default:3
) –The minimum maximum lag time to use when estimating the statistical inefficiency. The default is 3.
Returns:
-
ndarray
–The initial positive sequence.
Source code in red/variance.py
_get_initial_monotone_sequence
#
_get_initial_monotone_sequence(
gamma_cap: NDArray[float64], min_max_lag_time: int = 3
) -> NDArray[float64]
Get the initial monotone sequence from the capital gamma function of a time series. See Geyer, 1992: https://www.jstor.org/stable/2246094.
Parameters:
-
gamma_cap
(ndarray
) –The capital gamma function of a time series.
-
min_max_lag_time
(int
, default:3
) –The minimum maximum lag time to use when estimating the statistical inefficiency.
Returns:
-
ndarray
–The initial monotone sequence.
Source code in red/variance.py
_get_initial_convex_sequence
#
_get_initial_convex_sequence(
gamma_cap: NDArray[float64], min_max_lag_time: int = 3
) -> NDArray[float64]
Get the initial convex sequence from the capital gamma function of a time series. See Geyer, 1992: https://www.jstor.org/stable/2246094.
Parameters:
-
gamma_cap
(ndarray
) –The capital gamma function of a time series.
-
min_max_lag_time
(int
, default:3
) –The minimum maximum lag time to use when estimating the statistical inefficiency.
Returns:
-
ndarray
–The initial convex sequence.
References
Adapted from https://github.com/cjgeyer/mcmc/blob/morph/package/mcmc/src/initseq.c, MIT License. YEAR: 2005, 2009, 2010, 2012 COPYRIGHT HOLDER: Charles J. Geyer and Leif T. Johnson
Source code in red/variance.py
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
|
_get_autocovariance_window
#
_get_autocovariance_window(
data: NDArray[float64],
kernel: Callable[[int], NDArray[float64]] = bartlett,
window_size: int = 10,
) -> NDArray[float64]
Calculate the autocovariance of a time series using window estimators.
Parameters:
-
data
(ndarray
) –A time series of data with shape (n_samples,).
-
kernel
(callable
, default:numpy.bartlett
) –A function that takes a window size and returns a window function. The default is numpy.bartlett.
-
window_size
(int
, default:10
) –The size of the window to use, defined in terms of time lags in the forwards direction.
Returns:
-
ndarray
–The autocovariance of the time series as a function of lag time.
Source code in red/variance.py
_smoothen_max_lag_times
#
Smoothen a list of maximum lag times by a) converting them to a monotinically decreasing sequence and b) linearly interpolating between points where the sequence changes. This may be useful when the max lag times are noisy.
Parameters:
-
max_lag_times
(ndarray
) –The maximum lag times to smoothen.
Returns:
-
ndarray
–The smoothened maximum lag times.
Source code in red/variance.py
get_variance_initial_sequence
#
get_variance_initial_sequence(
data: NDArray[float64],
sequence_estimator: str = "initial_convex",
min_max_lag_time: int = 3,
max_max_lag_time: Optional[int] = None,
autocov: Optional[NDArray[float64]] = None,
) -> Tuple[float, int, NDArray[float64]]
Calculate the variance of a time series using initial sequence methods. See Geyer, 1992: https://www.jstor.org/stable/2246094.
Parameters:
-
data
(ndarray
) –A time series of data with shape (n_samples,).
-
sequence_estimator
(str
, default:'initial_convex'
) –The initial sequence estimator to use. Can be "positive", "initial_positive", "initial_monotone", or "initial_convex". The default is "initial_convex". "positive" corresponds to truncating the auto-covariance function at the first negative value, as is done in pymbar. The other methods correspond to the methods described in Geyer, 1992: https://www.jstor.org/stable/2246094.
-
min_max_lag_time
(int
, default:3
) –The minimum maximum lag time to use when estimating the statistical inefficiency.
-
max_max_lag_time
(int
, default:None
) –The maximum maximum lag time to use when calculating the auto-correlation function. If None, the maximum lag time will be the length of the time series.
-
autocov
(ndarray
, default:None
) –The auto-covariance function of the time series. If None, this will be calculated from the time series.
Returns:
-
float
–The estimated variance of the time series, accounting for correlation.
-
int
–The maximum lag time used when calculating the auto-correlated variance.
-
ndarray
–The auto-covariance function of the time series.
Source code in red/variance.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
|
get_variance_series_initial_sequence
#
get_variance_series_initial_sequence(
data: NDArray[float64],
sequence_estimator: str = "initial_convex",
min_max_lag_time: int = 3,
max_max_lag_time: Optional[int] = None,
smooth_lag_times: bool = False,
frac_padding: float = 0.1,
) -> Tuple[NDArray[float64], NDArray[float64]]
Repeatedly calculate the variance of a time series while discarding increasing numbers of samples from the start of the time series. The variance is calculated using initial sequence methods. See Geyer, 1992: https://www.jstor.org/stable/2246094.
Parameters:
-
data
(ndarray
) –A time series of data with shape (n_samples,).
-
sequence_estimator
(str
, default:'initial_convex'
) –The initial sequence estimator to use. Can be "positive", "initial_positive", "initial_monotone", or "initial_convex". The default is "initial_convex". "positive" corresponds to truncating the auto-covariance function at the first negative value, as is done in pymbar. The other methods correspond to the methods described in Geyer, 1992: https://www.jstor.org/stable/2246094.
-
min_max_lag_time
(int
, default:3
) –The minimum maximum lag time to use when estimating the statistical inefficiency.
-
max_max_lag_time
(int
, default:None
) –The maximum maximum lag time to use when calculating the auto-correlation function. If None, the maximum lag time will be the length of the time series.
-
smooth_lag_times
(bool
, default:False
) –Whether to smooth out the max lag times by a) converting them to a monotinically decreasing sequence and b) linearly interpolating between points where the sequence changes. This may be useful when the max lag times are noisy.
-
frac_padding
(float
, default:0.1
) –The fraction of the end of the timeseries to avoid calculating the variance for. For example, if frac_padding = 0.1, the variance will be calculated for the first 90% of the time series. This helps to avoid noise in the variance when there are few data points.
Returns:
-
ndarray
–The variance of the time series as a function of the number of discarded samples.
-
ndarray
–The maximum lag time used when calculating the auto-correlated variance.
Source code in red/variance.py
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
|
get_variance_window
#
get_variance_window(
data: NDArray[float64],
kernel: Callable[[int], NDArray[float64]] = bartlett,
window_size: int = 10,
) -> float
Calculate the variance of a time series using window estimators.
Parameters:
-
data
(ndarray
) –A time series of data with shape (n_samples,).
-
kernel
(callable
, default:numpy.bartlett
) –A function that takes a window size and returns a window function.
-
window_size
(int
, default:10
) –The size of the window to use, defined in terms of time lags in the forwards direction.
Returns:
-
float
–The estimated variance of the time series.
Source code in red/variance.py
get_variance_series_window
#
get_variance_series_window(
data: NDArray[float64],
kernel: Callable[[int], NDArray[float64]] = bartlett,
window_size_fn: Optional[
Callable[[int], int]
] = lambda x: round(x**0.5),
window_size: Optional[int] = None,
frac_padding: float = 0.1,
) -> Tuple[NDArray[float64], NDArray[float64]]
Repeatedly calculate the variance of a time series while discarding increasing numbers of samples from the start of the time series. The variance is calculated using window estimators.
Parameters:
-
data
(ndarray
) –A time series of data with shape (n_samples,).
-
kernel
(callable
, default:numpy.bartlett
) –A function that takes a window size and returns a window function.
-
window_size_fn
(callable
, default:lambda x: round(x**0.5)
) –A function that takes the length of the time series and returns the window size to use. If this is not None, window_size must be None.
-
window_size
(int
, default:None
) –The size of the window to use, defined in terms of time lags in the forwards direction. If this is not None, window_size_fn must be None.
-
frac_padding
(float
, default:0.1
) –The fraction of the end of the timeseries to avoid calculating the variance for. For example, if frac_padding = 0.1, the variance will be calculated for the first 90% of the time series. This helps to avoid noise in the variance when there are few data points.
Returns:
-
ndarray
–The variance of the time series as a function of the number of discarded samples.
-
ndarray
–The window size used at each index.
Source code in red/variance.py
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 |
|
replicated_batch_means_variance
#
Estimate the variance of a time series using the replicated batch means method. See section 3.1 in Statist. Sci. 36(4): 518-529 (November 2021). DOI: 10.1214/20-STS812 .
Parameters:
-
data
(ndarray
) –The time series data. This should have shape (n_chains, n_samples).
-
batch_size
(int
) –The batch size to use.
Returns:
-
float
–The estimated variance.
Source code in red/variance.py
lugsail_variance
#
Estimate the variance of a time series using the lugsail method. See section 3.2 in Statist. Sci. 36(4): 518-529 (November 2021). DOI: 10.1214/20-STS812 .
Parameters:
-
data
(ndarray
) –The time series data. This should have shape (n_chains, n_samples).
-
n_pow
(float
, default:1/3
) –The batch size is computed as floor(n_samples**n_pow). Recommended choices are 1/3 or 1/2.
Returns:
-
float
–The estimated variance.
Source code in red/variance.py
inter_run_variance
#
Compute the variance based on the inter-run differences between means.
Parameters:
-
data
(ndarray
) –The time series data. This should have shape (n_chains, n_samples).
Returns:
-
float
–The estimated variance.
Source code in red/variance.py
intra_run_variance
#
Compute the average intra-run variance estimate.
Parameters:
-
data
(ndarray
) –The time series data. This should have shape (n_chains, n_samples).
Returns:
-
float
–The mean intra-run variance estimate.