equilibration
#
Functions for selecting the equilibration time of a time series.
Functions:
-
detect_equilibration_init_seq
–Detect the equilibration time of a time series by finding the minimum
-
detect_equilibration_window
–Detect the equilibration time of a time series by finding the minimum
-
get_paired_t_p_timeseries
–Get a timeseries of the p-values from a paired t-test on the differences
-
detect_equilibration_paired_t_test
–Detect the equilibration time of a time series by performing a paired
detect_equilibration_init_seq
#
detect_equilibration_init_seq(
data: NDArray[float64],
times: Optional[NDArray[float64]] = None,
method: str = "min_sse",
sequence_estimator: str = "initial_convex",
min_max_lag_time: int = 3,
max_max_lag_time: Optional[int] = None,
smooth_lag_times: bool = False,
frac_padding: float = 0.1,
plot: bool = False,
plot_name: Union[
str, Path
] = "equilibration_sse_init_seq.png",
time_units: str = "ns",
data_y_label: str = "$\\Delta G$ / kcal mol$^{-1}$",
plot_max_lags: bool = True,
) -> Tuple[Union[float, int], float, float]
Detect the equilibration time of a time series by finding the minimum squared standard error (SSE), or maximum effective sample size (ESS) of the time series, using initial sequence estimators of the variance. This is done by computing the SSE at each time point, discarding all samples before the time point. The index of the time point with the minimum SSE or maximum ESS is taken to be the point of equilibration.
Parameters:
-
data
(ndarray
) –The time series data. This should have shape (n_runs, n_samples) or (n_samples,).
-
times
(ndarray
, default:None
) –The times at which the data was sampled. If this is not provided, the indices of the data will be used.
-
method
(str
, default:"min_sse"
) –The method to use to select the equilibration time. This can be "min_sse" or "max_ess".
-
sequence_estimator
(str
, default:'initial_convex'
) –The initial sequence estimator to use. Can be "positive", "initial_positive", "initial_monotone", or "initial_convex". The default is "initial_convex". "positive" corresponds to truncating the auto-covariance function at the first negative value, as is done in pymbar. The other methods correspond to the methods described in Geyer, 1992: https://www.jstor.org/stable/2246094.
-
min_max_lag_time
(int
, default:3
) –The minimum maximum lag time to use when estimating the statistical inefficiency.
-
max_max_lag_time
(int
, default:None
) –The maximum maximum lag time to use when calculating the auto-correlation function. If None, the maximum lag time will be the length of the time series.
-
smooth_lag_times
(bool
, default:False
) –Whether to smooth out the max lag times by a) converting them to a monotinically decreasing sequence and b) linearly interpolating between points where the sequence changes. This may be useful when the max lag times are noisy.
-
frac_padding
(float
, default:0.1
) –The fraction of the end of the timeseries to avoid calculating the variance for. For example, if frac_padding = 0.1, the variance will be calculated for the first 90% of the time series. This helps to avoid noise in the variance when there are few data points.
-
plot
(bool
, default:False
) –Whether to plot the SSE curve. The default is False.
-
plot_name
(str | Path
, default:'equilibration_sse_init_seq.png'
) –The name of the plot file. The default is 'equilibration_sse_init_seq.png'.
-
time_units
(str
, default:'ns'
) –The units of time. The default is "ns".
-
data_y_label
(str
, default:'$\\Delta G$ / kcal mol$^{-1}$'
) –The y-axis label for the time series data. The default is "\(\Delta G\) / kcal mol\(^{-1}\)".
-
plot_max_lags
(bool
, default:True
) –Whether to plot the maximum lag times used to estimate the variance.
Returns:
-
equil_time
(float | int
) –The time (or index, if no times are supplied) at which the time series is equilibrated.
-
equil_g
(float
) –The statistical inefficiency at the equilibration point.
-
equil_ess
(float
) –The effective sample size at the equilibration point.
Source code in red/equilibration.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
detect_equilibration_window
#
detect_equilibration_window(
data: NDArray[float64],
times: Optional[NDArray[float64]] = None,
method: str = "min_sse",
kernel: Callable[[int], NDArray[float64]] = bartlett,
window_size_fn: Optional[
Callable[[int], int]
] = lambda x: round(x**0.5),
window_size: Optional[int] = None,
frac_padding: float = 0.1,
plot: bool = False,
plot_name: Union[
str, Path
] = "equilibration_sse_window.png",
time_units: str = "ns",
data_y_label: str = "$\\Delta G$ / kcal mol$^{-1}$",
plot_window_size: bool = True,
) -> Tuple[Union[float, int], float, float]
Detect the equilibration time of a time series by finding the minimum squared standard error (SSE) or maximum effective sample size (ESS) of the time series, using window estimators of the variance. This is done by computing the SSE at each time point, discarding all samples before the time point. The index of the time point with the minimum SSE is taken to be the point of equilibration.
Parameters:
-
data
(ndarray
) –The time series data. This should have shape (n_runs, n_samples) or (n_samples,). If the method is 'lugsail', the data may have only one run, but otherwise there must be at least two runs.
-
times
(ndarray
, default:None
) –The times at which the data was sampled. If this is not provided, the indices of the data will be used.
-
method
(str
, default:"min_sse"
) –The method to use to select the equilibration time. This can be "min_sse" or "max_ess".
-
kernel
(callable
, default:numpy.bartlett
) –A function that takes a window size and returns a window function.
-
window_size_fn
(callable
, default:lambda x: round(x**0.5)
) –A function that takes the length of the time series and returns the window size to use. If this is not None, window_size must be None.
-
window_size
(int
, default:None
) –The size of the window to use, defined in terms of time lags in the forwards direction. If this is not None, window_size_fn must be None.
-
frac_padding
(float
, default:0.1
) –The fraction of the end of the timeseries to avoid calculating the variance for. For example, if frac_padding = 0.1, the variance will be calculated for the first 90% of the time series. This helps to avoid noise in the variance when there are few data points.
-
plot
(bool
, default:False
) –Whether to plot the ESS curve. The default is False.
-
plot_name
(str | Path
, default:'equilibration_sse_window.png'
) –The name of the plot file. The default is 'equilibration_sse_window.png'.
-
time_units
(str
, default:'ns'
) –The units of time. The default is "ns".
-
data_y_label
(str
, default:'$\\Delta G$ / kcal mol$^{-1}$'
) –The y-axis label for the time series data. The default is "\(\Delta G\) / kcal mol\(^{-1}\)".
-
plot_window_size
(bool
, default:True
) –Whether to plot the window size used to estimate the variance.
Returns:
-
equil_time
(float | int
) –The time (or index, if no times are supplied) at which the time series is equilibrated.
-
equil_g
(float
) –The statistical inefficiency at the equilibration point.
-
equil_ess
(float
) –The effective sample size at the equilibration point.
Source code in red/equilibration.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
|
get_paired_t_p_timeseries
#
get_paired_t_p_timeseries(
data: NDArray[float64],
times: Optional[NDArray[float64]] = None,
fractional_block_size: float = 0.125,
fractional_test_end: float = 0.5,
initial_block_size: float = 0.1,
final_block_size: float = 0.5,
t_test_sidedness: str = "two-sided",
) -> Tuple[NDArray[float64], NDArray[float64]]
Get a timeseries of the p-values from a paired t-test on the differences between sample means between intial and final portions of the data. The timeseries is obtained by repeatedly discarding more data from the time series between calculations of the p-value.
Parameters:
-
data
(ndarray
) –The time series data. This should have shape (n_runs, n_samples) and must have at least two runs.
-
times
(ndarray
, default:None
) –The times at which the data was sampled. If this is not provided, the indices of the data will be used.
-
fractional_block_size
(float
, default:0.125
) –The fraction of data to discard between repeats. The default is 0.125.
-
fractional_test_end
(float
, default:0.5
) –The fraction of the time series to use in the final test. The default is 0.5.
-
initial_block_size
(float
, default:0.1
) –The fraction of the truncated time series to use for the "before" portion of the paired t-test. The default is 0.1.
-
final_block_size
(float
, default:0.5
) –The fraction of the truncated time series to use for the "after" portion of the paired t-test. The default is 0.5.
-
t_test_sidedness
(str
, default:'two-sided'
) –The sidedness of the paired t-test. This can be either 'two-sided', 'less', or 'greater'. The default is 'two-sided'.
Returns:
-
ndarray
–The p-values of the paired t-test.
-
ndarray
–The times at which the p-values were calculated.
Source code in red/equilibration.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
|
detect_equilibration_paired_t_test
#
detect_equilibration_paired_t_test(
data: NDArray[float64],
times: Optional[NDArray[float64]] = None,
p_threshold: float = 0.05,
fractional_block_size: float = 0.125,
fractional_test_end: float = 0.5,
initial_block_size: float = 0.1,
final_block_size: float = 0.5,
t_test_sidedness: str = "two-sided",
plot: bool = False,
plot_name: Union[
str, Path
] = "equilibration_paired_t_test.png",
time_units: str = "ns",
data_y_label: str = "$\\Delta G$ / kcal mol$^{-1}$",
) -> int
Detect the equilibration time of a time series by performing a paired t-test between initial and final portions of the time series. This is repeated , discarding more data from the time series between repeats. If the p-value is greater than the threshold, there is no significant evidence that the data is no equilibrated and the timeseries is taken to be equilibrated at this time point. This test may be useful when we care only about systematic bias in the data, and do not care about detecting inter-run differences.
Parameters:
-
data
(ndarray
) –The time series data. This should have shape (n_runs, n_samples) and must have at least two runs.
-
times
(ndarray
, default:None
) –The times at which the data was sampled. If this is not provided, the indices of the data will be used.
-
p_threshold
(float
, default:0.05
) –The p-value threshold to use. The default is 0.05.
-
fractional_block_size
(float
, default:0.125
) –The fraction of data to discard between repeats. The default is 0.125.
-
fractional_test_end
(float
, default:0.5
) –The fraction of the time series to use in the final test. The default is 0.5.
-
initial_block_size
(float
, default:0.1
) –The fraction of the truncated time series to use for the "before" portion of the paired t-test. The default is 0.1.
-
final_block_size
(float
, default:0.5
) –The fraction of the truncated time series to use for the "after" portion of the paired t-test. The default is 0.5.
-
t_test_sidedness
(str
, default:'two-sided'
) –The sidedness of the paired t-test. This can be either 'two-sided', 'less', or 'greater'. The default is 'two-sided'.
-
plot
(bool
, default:False
) –Whether to plot the p-values. The default is False.
-
plot_name
(str | Path
, default:'equilibration_paired_t_test.png'
) –The name of the plot file. The default is 'equilibration_paired_t_test.png'.
-
time_units
(str
, default:'ns'
) –The units of time. The default is "ns".
-
data_y_label
(str
, default:'$\\Delta G$ / kcal mol$^{-1}$'
) –The y-axis label for the time series data. The default is "\(\Delta G\) / kcal mol\(^{-1}\)".
Returns:
-
int
–The time point at which the time series is equilibrated.
Source code in red/equilibration.py
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
|