confidence_intervals
#
Convenience function for computing 95 % confidence intervals.
Functions:
-
get_conf_int_init_seq
–Calculate the confidence interval for the mean of a time
get_conf_int_init_seq
#
get_conf_int_init_seq(
data: NDArray[float64],
alpha_two_tailed: float = 0.05,
sequence_estimator: str = "initial_convex",
min_max_lag_time: int = 3,
max_max_lag_time: Optional[int] = None,
) -> float
Calculate the confidence interval for the mean of a time series using initial sequence methods. See Geyer, 1992: https://www.jstor.org/stable/2246094.
Parameters:
-
data
(ndarray
) –A time series of data with shape (n_samples,).
-
alpha_two_tailed
(float
, default:0.05
) –The two-tailed significance level to use. The default is 0.05.
-
sequence_estimator
(str
, default:'initial_convex'
) –The initial sequence estimator to use. Can be "positive", "initial_positive", "initial_monotone", or "initial_convex". The default is "initial_convex". "positive" corresponds to truncating the auto-covariance function at the first negative value, as is done in pymbar. The other methods correspond to the methods described in Geyer, 1992: https://www.jstor.org/stable/2246094.
-
min_max_lag_time
(int
, default:3
) –The minimum maximum lag time to use when estimating the statistical inefficiency.
-
max_max_lag_time
(int
, default:None
) –The maximum maximum lag time to use when calculating the auto-correlation function. If None, the maximum lag time will be the length of the time series.
Returns:
-
float
–The standard error of the mean.